linux内存的保护机制及应对

linux内存的保护机制

Posted by XT on October 1, 2018

checksec的保护机制

linux内存的保护机制及应对

今天在研究liunx下栈溢出的时候发现自己对各种保护机制并不是特别了解,因此就这方面的知识在网上查找了一些资料并总结了一些心得和大家分享。

操作系统提供了许多安全机制来尝试降低或阻止缓冲区溢出攻击带来的安全风险,包括DEP、ASLR等。在编写漏洞利用代码的时候,需要特别注意目标进程是否开启了DEP(Linux下对应NX)、ASLR(Linux下对应PIE)等机制,例如存在DEP(NX)的话就不能直接执行栈上的数据,存在ASLR的话各个系统调用的地址就是随机化的。

一、checksec:

checksec是一个脚本软件,也就是用脚本写的一个文件,不到2000行,可用来学习shell。

源码参见

http://www.trapkit.de/tools/checksec.html

https://github.com/slimm609/checksec.sh/

下载方法之一为

wget https://github.com/slimm609/checksec.sh/archive/1.6.tar.gz

checksec到底是用来干什么的?

它是用来检查可执行文件属性,例如PIE, RELRO, PaX, Canaries, ASLR, Fortify Source等等属性。

checksec的使用方法:

img

checksec –file /usr/sbin/sshd

img

一般来说,如果是学习二进制漏洞利用的朋友,建议大家使用gdb里peda插件里自带的checksec功能,如下:

下面我们就图中各个保护机制进行一个大致的了解。

二、CANNARY(栈保护)

这个选项表示栈保护功能有没有开启。

栈溢出保护是一种缓冲区溢出攻击缓解手段,当函数存在缓冲区溢出攻击漏洞时,攻击者可以覆盖栈上的返回地址来让shellcode能够得到执行。当启用栈保护后,函数开始执行的时候会先往栈里插入cookie信息,当函数真正返回的时候会验证cookie信息是否合法,如果不合法就停止程序运行。攻击者在覆盖返回地址的时候往往也会将cookie信息给覆盖掉,导致栈保护检查失败而阻止shellcode的执行。在Linux中我们将cookie信息称为canary。

gcc在4.2版本中添加了-fstack-protector和-fstack-protector-all编译参数以支持栈保护功能,4.9新增了-fstack-protector-strong编译参数让保护的范围更广。

因此在编译时可以控制是否开启栈保护以及程度,例如:

gcc -fno-stack-protector -o test test.c //禁用栈保护

gcc -fstack-protector -o test test.c //启用堆栈保护,不过只为局部变量中含有 char 数组的函数插入保护代码

gcc -fstack-protector-all -o test test.c //启用堆栈保护,为所有函数插入保护代码

RELRO:RELRO会有Partial RELRO和FULL RELRO,如果开启FULL RELRO,意味着我们无法修改got表

Stack:如果栈中开启Canary found,那么就不能用直接用溢出的方法覆盖栈中返回地址,而且要通过改写指针与局部变量、leak canary、overwrite canary的方法来绕过

NX:NX enabled如果这个保护开启就是意味着栈中数据没有执行权限,以前的经常用的call esp或者jmp esp的方法就不能使用,但是可以利用rop这种方法绕过

PIE:PIE enabled如果程序开启这个地址随机化选项就意味着程序每次运行的时候地址都会变化,而如果没有开PIE的话那么No PIE (0x400000),括号内的数据就是程序的基地址 

FORTIFY:FORTIFY_SOURCE机制对格式化字符串有两个限制
(1)包含%n的格式化字符串不能位于程序内存中的可写地址。
(2)当使用位置参数时,必须使用范围内的所有参数。所以如果要使用%7$x,你必须同时使用1,2,3,4,5和6。

0x03 **泄露ibc地址和版本的方法

【1】利用格式化字符串漏洞泄露栈中的数据,从而找到libc的某个函数地址,再利用libc-database来判断远程libc的版本,之后再计算出libc的基址,一般做题我喜欢找__libc_start_main的地址

【2】利用write这个函数,pwntools有个很好用的函数DynELF去利用这个函数计算出程序的各种地址,包括函数的基地址,libc的基地址,libc中system的地址

【3】利用printf函数,printf函数输出的时候遇到0x00时候会停止输出,如果输入的时候没有在最后的字节处填充0x00,那么输出的时候就可能泄露栈中的重要数据,比如libc的某个函数地址

0x05 简单的栈溢出

程序没有开启任何保护:

方法一:传统的教材思路是把shellcode写入栈中,然后查找程序中或者libc中有没有call esp或者jmp esp,比如这个题目:http://blog.csdn.net/niexinming/article/details/76893510

方法二:但是现代操作系统中libc中会开启地址随机化,所以先寻找程序中system的函数,再布局栈空间,调用gets(.bss),最后调用system(‘/bin/sh’) 比如这个题目:http://blog.csdn.net/niexinming/article/details/78796408

方法三:覆盖虚表方式利用栈溢出漏洞,这个方法是m4x师傅教我的方法,我觉得很巧妙,比如这个题目:http://blog.csdn.net/niexinming/article/details/78144301

0x06 开启nx的程序

开启nx之后栈和bss段就只有读写权限,没有执行权限了,所以就要用到rop这种方法拿到系统权限,如果程序很复杂,或者程序用的是静态编译的话,那么就可以使用ROPgadget这个工具很方便的直接生成rop利用链。有时候好多程序不能直接用ROPgadget这个工具直接找到利用链,所以就要手动分析程序来getshell了,比如这两个题目: http://blog.csdn.net/niexinming/article/details/78259866

0x07 开启 canary 的程序

开启canary后就不能直接使用普通的溢出方法来覆盖栈中的函数返回地址了,要用一些巧妙的方法来绕过或者利canary本身的弱点来攻击

【1】利用canary泄露flag,这个方法很巧妙的运用了canary本身的弱点,当__stack_check_fail时,会打印出正在运行中程序的名称,所以,我们只要将__libc_argv[0]覆盖为flag的地址就能将flag打印出来,比如这个题目: http://blog.csdn.net/niexinming/article/details/78522682

【2】利用printf函数泄露一个子进程的Canary,再在另一个子进程栈中伪造Canary就可以绕过Canary的保护了,比如这个题目:http://blog.csdn.net/niexinming/article/details/78681846

0x08 开启PIE的程序

【1】利用printf函数尽量多打印一些栈中的数据,根据泄露的地址来计算程序基地址,libc基地址,system地址,比如这篇文章中echo2的wp: http://blog.csdn.net/niexinming/article/details/78512274

【2】利用write泄露程序的关键信息,这样的话可以很方便的用DynELF这个函数了,比如这个文章中的rsbo2的题解:http://blog.csdn.net/niexinming/article/details/78620566

0x09 全部保护开启

如果程序的栈可以被完全控制,那么程序的保护全打开也会被攻破,比如这个题目:http://blog.csdn.net/niexinming/article/details/78666941

0x0a 格式化字符串漏洞

格式化漏洞现在很难在成熟的软件中遇到,但是这个漏洞却很有趣

【1】pwntools有很不错的函数FmtStr和fmtstr_payload来自动计算格式化漏洞的利用点,并且自动生成payload,比如这个题目:http://blog.csdn.net/niexinming/article/details/78699413http://blog.csdn.net/niexinming/article/details/78512274 中echo的题解

【2】格式化漏洞也是信息泄露的好伴侣,比如这个题目中制造格式化字符串漏洞泄露各种数据 http://blog.csdn.net/niexinming/article/details/78768850

0x0b uaf漏洞

如果把堆释放之后,没有把指针指针清0,还让指针保存下来,那么就会引发很多问题,比如这个题目 http://blog.csdn.net/niexinming/article/details/78598635

0x0c 任意位置写

如果程序可以在内存中的任意位置写的话,那么威力绝对很大

【1】虽然只能写一个字节,但是依然可以控制程序的并getshell,比如这个题目 http://blog.csdn.net/niexinming/article/details/78542089

【2】修改got表是个控制程序流程的好办法,很多ctf题目只要能通过各种方法控制got的写入,就可以最终得到胜利,比如这个题目: http://blog.csdn.net/niexinming/article/details/78542089

【3】如果能计算出libc的基地址的话,控制top_chunk指针也是解题的好方法,比如这个题目: http://blog.csdn.net/niexinming/article/details/78759363